Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration

نویسنده

  • Dibin Zhu
چکیده

With the development of low power electronics and energy harvesting technology, selfpowered systems have become a research hotspot over the last decade. The main advantage of self-powered systems is that they require minimum maintenance which makes them to be deployed in large scale or previously inaccessible locations. Therefore, the target of energy harvesting is to power autonomous ‘fit and forget’ electronic systems over their lifetime. Some possible alternative energy sources include photonic energy (Norman, 2007), thermal energy (Huesgen et al., 2008) and mechanical energy (Beeby et al., 2006). Among these sources, photonic energy has already been widely used in power supplies. Solar cells provide excellent power density. However, energy harvesting using light sources restricts the working environment of electronic systems. Such systems cannot work normally in low light or dirty conditions. Thermal energy can be converted to electrical energy by the Seebeck effect while working environment for thermo-powered systems is also limited. Mechanical energy can be found in instances where thermal or photonic energy is not suitable, which makes extracting energy from mechanical energy an attractive approach for powering electronic systems. The source of mechanical energy can be a vibrating structure, a moving human body or air/water flow induced vibration. The frequency of the mechanical excitation depends on the source: less than 10Hz for human movements and typically over 30Hz for machinery vibrations (Roundy et al., 2003). In this chapter, energy harvesting from various vibration sources will be reviewed. In section 2, energy harvesting from machinery vibration will be introduced. A general model of vibration energy harvester is presented first followed by introduction of three main transduction mechanisms, i.e. electromagnetic, piezoelectric and electrostatic transducers. In addition, vibration energy harvesters with frequency tunability and wide bandwidth will be discussed. In section 3, energy harvesting from human movement will be introduced. In section 4, energy harvesting from flow induced vibration (FIV) will be discussed. Three types of such generators will be introduced, i.e. energy harvesting from vortex-induced vibration (VIV), fluttering energy harvesters and Helmholtz resonator. Conclusions will be given in section 5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A periodic folded piezoelectric beam for efficient vibration energy harvesting

Periodic piezoelectric beams have been used for broadband vibration energy harvesting in recent years. In this paper, a periodic folded piezoelectric beam (PFPB) is introduced. The PFPB has special features that distinguish it from other periodic piezoelectric beams. The Adomian decomposition method (ADM) is used to calculate the first two band gaps andtwelve natural frequencies of the PF...

متن کامل

Smart Flat Membrane Sheet Vibration-Based Energy Harvesters

The dynamic responses of membrane are completely dependent on Pre-tensioned forces which are applied over a boundary of arbitrary curvilinear shape. In most practical cases, the dynamic responses of membrane structures are undesirable. Whilst they can be designed as vibration-based energy harvesters. In this paper a smart flat membrane sheet (SFMS) model for vibration-based energy harvester is ...

متن کامل

Energy Neutral Operation of Vibration Energy-Harvesting Sensor Networks for Bridge Applications

Structural monitoring of critical bridge structures can greatly benefit from the use of wireless sensor networks (WSNs), however energy harvesting for the operation of the network remains a challenge in this setting. While solar and wind power are possible and credible solutions to energy generation, the need for positioning sensor nodes in shaded and sheltered locations, e.g., under a bridge d...

متن کامل

Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration

The primary objective of this research is to develop a deploy-and-forget energy harvesting device for use in low-velocity, highly turbulent fluid flow environments i.e. streams or ventilation systems. The work presented here focuses on a novel, lightweight, highly robust, energy harvester design referred to as piezoelectric grass. This biologically inspired design consists of an array of cantil...

متن کامل

Improving Power Density of Piezoelectric Vibration-Based Energy Scavengers

Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011